Inhibition of calcium oxalate crystallization in vitro by methanolic leaf extract of Murraya koenigii (L.) Spreng

Dinesh Chaudhary, Sanjita Paudel, Ram Milan Rana, Sangita Timsina, Komal Prasad Malla, Paras Mani Giri and Bishnu Prasad Neupane

Abstract
Medicinal plants are old as human society for treatment, prevention or mitigation of diseases. Murraya koenigii (M. koenigii) is commonly known as curry plant, used in treatment or prevention of many diseases including kidney stone. The objective of this research was in vitro study on inhibition of calcium oxalate crystallization through titrimetric method. The results showed that greater inhibitory activity of M. koenigii was found at 48 mg/ml (61.26%) while cystone showed maximum activity at 446 mg/ml (70.18%). Inhibitory activity of M. koenigii was concentration dependent manner which indicates the decrease of stone forming constituents. This activity of M. koenigii might be due to presence of secondary metabolites such as saponins and other phytoconstituents. Thus, it supports the knowledge of ethnomedicine in some tribes for prevention of kidney stone. And, in vivo study and chemical characterization of M. koenigii could be new candidate for treatment of kidney stone diseases in future.

Keywords: Calcium oxalate, Kidney stone, Murraya koenigii, Saponins, Titrimetric method

1. Introduction
Medicinal plants have been used for treatment or mitigation of diseases of antiquity [1]. Murraya koenigii (L.) Spreng is commonly, known as karipatta or kadipatta in Nepali as well as in Hindi and curry plant in English [1-2]. It belongs to Rutaceae family which is widely distributed in Nepal, India, Sri Lanka, Thailand, Pakistan, Bhutan etc. [1-3]. It is most often used in Nepal and India for its medicinal and aromatic properties [3]. Traditionally, it is used as antiarheal, blood purifier, hair tonic, Antinociceptive, antisydentic, antiamnesic, antifungal, memory enhancer, anianemic, antientemetic and antiperiodic [4-5]. Similarly, it is traditionally used to cure kidney pain, vomiting, itching, dysentery, blood disorder, diabetes mellitus, leucoderma, hypercholerolemaing lightening [6-8]. In addition to this, it has various biological activities such as antioxidant, antibacterial, antiabetic, antiprotozoal, hepatoprotective, antitumor, antiwiral, antileukemial etc. [2, 4, 9, 10].

Kidney stone is oldest painful urological disorder among all age groups [11, 12]. It mainly occurs due to dis-function of promoters and inhibitors which is more common in male as compared to female [12, 13]. Incidence of kidney stone disease is found to be more common in western region rather than eastern region of the earth [11, 14]. Genetic factor, dietary factor and modification of life style could be promising risk factors of kidney stone disease [15, 16]. The objective of this research was to determine the inhibition of calcium oxalate crystallization by M. koenigii for the prevention of kidney stone disease, used by some tribes like tharu which was left unnoticed.

2. Materials and methods
2.1 Collection of Plant Materials
Leaves of M. koenigii was collected from Shree Shahid Sanghari Bhimdatta Pant Community Forest, Godawari-05, Kailali, Nepal and confirmed from literature reviews [3, 4, 7]. Voucher specimen of M. koenigii was deposited in Pharmacognosy Laboratory of School of Health and Allied Sciences, Pokhara University, Kaski, Nepal for its future reference.

2.2 Extraction
Shaded dried sample of M. koenigii was pulverized into small pieces. Then, 100 gm of sample was macerated in 700 ml Methanol (crude drug: Methanol = 1:7) for 24 hour. Then, filtration was carried out using whatman filter paper. Afterward, solvent from filtrates was evaporated by using rotary vacuum evaporator and kept in desiccator till complete removable of solvent. Then, obtained extract was collected into vial and preserved in refrigerator before its use.
2.3 Phytochemical Screening of *M. koenigii*
Phytochemical screening of *M. koenigii* was performed for the detection of secondary metabolites through standard methods \[17, 18\].

2.4 Inhibition of Calcium Oxalate Crystallization by *M. koenigii*
Inhibition of calcium oxalate crystallization by methanolic leaf extract of *M. koenigii* was carried out by titrimetric method at room temperature \[19, 20\]. During experiment, stock solution of cystone (Himalaya Herbal Drug) was prepared on keeping its powder in 100 ml distilled water for 2 hour followed by its centrifugation at 1000 rpm. Similarly, stock solution of *M. koenigii* was prepared from dried extract and allowed for its centrifugation at 1000 rpm. Obtained supernatant solution of plant extract and cystone was used for experimentation. Supernatant of plant extract was diluted to different concentrations (16 mg/ml, 20 mg/ml, 24 mg/ml, 28 mg/ml, 32 mg/ml, 36 mg/ml, 40 mg/ml, 44 mg/ml and 48 mg/ml). Briefly, Calcium chloride and sodium oxalate i.e. salt forming agents were allowed to fall with equal speed into 250 ml of beaker containing 25 ml of sample. Afterwards, obtained mixture was digested at heating mantle for 10 min, and followed by its cooling at room temperature. Subsequently, it was collected in pre-weighed centrifuge test tube. Then, precipitation of calcium oxalate was obtained after its centrifugation and dried weight of calcium oxalate was calculated. For blank, water was used in place of inhibitor. Then, percentage of inhibition was calculated through Eq. (1).

\[
\text{Percentage of Inhibition} = \frac{(\text{Wt. of precipitate in blank set} - \text{Wt. of precipitate in extract or standard set}) \times 100\%}{\text{Wt. of precipitate in blank set}}
\] (1)

3. Results & Discussion
3.1 Phytochemical Screening of *M. koenigii*
Phytochemical screening of *M. koenigii* showed the presence of various metabolites such as steroids, terpenoids, saponins, tannins, alkaloids and flavonoids (Table 1). They might have role in inhibition of calcium oxalate crystallization.

<table>
<thead>
<tr>
<th>Phytochemical Screening of Methanolic Extracts</th>
<th>Alkaloids</th>
<th>Flavonoids</th>
<th>Saponins</th>
<th>Steroids</th>
<th>Tannins</th>
<th>Terpenoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. koenigii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: (+) indicates presence of compound and (-) indicates absence of compound

3.2 Inhibition of Calcium Oxalate Crystallization by *M. koenigii*
In the present study, inhibition of calcium oxalate crystallization by *M. koenigii* was dose dependent in manner which indicates the decrease of stone forming constituents (Table 2 and 3). *M. koenigii* showed greater inhibition of calcium oxalate crystallization at 48 mg/ml (61.26%) which was comparable to cystone as standard was 70.18% at 446 mg/ml.

<table>
<thead>
<tr>
<th>Weight of calcium oxalate crystallization at different concentration (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. koenigii</td>
</tr>
<tr>
<td>0.29±0</td>
</tr>
<tr>
<td>Cystone</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>Negative control</td>
</tr>
</tbody>
</table>

Note: Data were expressed as mean ± standard deviation (n=3)

<table>
<thead>
<tr>
<th>Percentage inhibition of calcium oxalate crystallization at different concentrations (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 mg/ml</td>
</tr>
<tr>
<td>M. koenigii</td>
</tr>
<tr>
<td>Cystone</td>
</tr>
</tbody>
</table>

According to Gurocak *et al.* (2006), saponins have well anti-crystallization property by disaggregating the suspension of mucoproteins, the promoters of crystallization \[21\]. Similarly, saponins rich fraction of Herniaria was found to be potent inhibitor of calcium oxalate crystallization *in vitro* as well as *in vivo* model \[22\]. And we concluded that inhibitory activity...
of *M. koenigii* might be due to presence of saponins and other phytoconstituents.

4. Conclusion

Thus, this study provides the utility of *M. koenigii* (L.) Spreng in kidney stone and also supports the knowledge of ethnomedicine in some tribes for prevention of kidney stone. Further study on *M. koenigii* could lead to develop new drug candidate for treatment of kidney stone disease in future.

5. Acknowledgments

Author thanks to School of Health and Allied Sciences, Pokhara University for providing laboratories and instrumentations. Mr. Gopal Lamichhane and Mr. Mahendra Adhikari, are acknowledged for their valuable support.

6. References